Maximum Likelihood in Machine Learning

MATH 290J, UCLA
©Michael Lindstrom, 2020

Intro

Many machine learning algorithms require parameter estimation. In
many cases this estimation is done using the principle of maximum
likelihood whereby we seek parameters so as to maximize the
probability the observed data occurred given the model with those
prescribed parameter values.

Examples of where maximum likelihood comes into play includes, but is
not limited to:

» linear and nonlinear regression

» binary classification with logistic regression

» feed forward neural networks to classify or fit data

» clustering via mixture of Gaussians (and kmeans to an extent)

Conditional Probability and Bayes’ Theorem

The conditional probability of event A given that event B happened is
defined by
Pr(AA B)

Pr(B)

From this very definition, we uncover Bayes’ Thereom:

Pr(A|B) =

Pr(AA B)
Pr(B)

_ Pr(AA B)Pr(A)

~ Pr(A)Pr(B)

_ Pr(B|A) Pr(A)

B Pr(B)

Pr(A|B) =

Nomenclature

For the sake of introducing maximum likelihood, we consider fitting data
to a model describing how the data are generated. We denote:

» D: the data/observations collected
» M(0): the model M chosen parameterized by parameters 6

For example, if we believe values are chosen from the a normal
distribution A'(u = 3,02 = 22) then 6 = (u, 0%) and M is a normal
distribution.

Terminology

We define the following terms:

posterior (probability): Pr(M(6)|D), i.e., the probability M(#) is correct
given the observed data.

likelihood: Pr(D|M(6)), i.e., the probability the data are observed given
the model and parameters are true.

prior (probability): Pr(M(9)), i.e., the probability mass/density for M(6)...
Remark: often expressions like Pr(D|M(#)) are not probabilities! They

could be probability densities, too. That doesn’t stop the general
community from this sort of notation.

Problems

posterior: Pr(M(6)|D)
likelihood: Pr(D|M(0))
prior: Pr(M(0))

Most would generally agree that the “best model and parameters” would
occur when the posterior is maximal. The trouble is that we cannot
directly calculate it!

But by Bayes’ Theorem we can write that

DiM(8)) Pr(M(6))

Pr(M(6)|D) = Pr(=75

Problems

If we really wanted, we can express Pr(D) in terms of (many) likelihoods
as

Pr(D) = / Pr(D|m)du(m)
M
where m ranges over M, all possible M(6), and n is a measure on M.

This isn’t really necessary as in trying to maximize Pr(M(6)|D), it is only
a normalization constant.

Frequentist vs Bayesian Perspective

So how to we maximize

Pr(M(0)|D) o Pr(D|M(0)) Pr(M(8))?

Frequentist: a frequentist would say, “ knowing the prior does not make
sense! How can we possibly know something about the probability
density/mass of all possible models in existence with their associated
sets of parameters? Let’s give up on the prior and focus on maximizing
the likelihood!”

Bayesian: a bayesian person would say, “let's make an assumption on
the prior and then try to maximize the posterior.”

Least Squares

The classical least squares algorithm is the frequentist approach of
estimating parameters. Let’s derive this famous result.

Let us denote Y € R to be a random variable representing a
measurement in an experiment. Given an input x € R", we assume

Y = f(x;0) + e

where
» fis a model parameterized by ¢ and

> ¢~ N(0,02) is a Gaussian random variable (experimental
error/uncertainty).

We shall denote o

D = {(x", yO)},
to be experimental points with inputs x{) and measured value of Y given
by y(.

Least Squares

Y
. *

N, f(x,0)
P

X

Model with Gaussian error.

Least Squares

For ease of notation, denote () = y() — f(x(); §). Each () is a random
variable with pdf (probability density function)

p(z) = \/2170

Assuming they are iid (independent identically distributed), to maximize
the likelihood we want to maximize

exp(—2%/(20%)).

L = Pr(D|M(0))

Pr(el) = y() — £(x(), 9))

I
o

-
—_

1
V2ro

exp(—(y") — f(x;6))?/(20%)).

I
.:Z

—_

Least Squares
Often one seeks to maximize the log likelihood or minimize the negative

log likelihood. Thus we wish to minimize

—L=- Iog L
L 00— 10, 9))2)

Z (Iog(\ﬁa 52

N 1 o
log(27) + Nlogo + 552 Z (x); 9))2

-2

L is minimized when

The value of —

> ¢ minimizes S_N ., (y) — f(x(); 6))2 and
> 02 =150 (yD — f(x(D;0))2 (yes, technically o is a model

parameter, t00).

Aside: Too Many Parameters?

It is certainly possible to overfit data using maximum likelihood. Imagine
fitting a polynomial of degree d through N points in the plane. The least
squares error could be zeroonce d = N — 1.

The Aikake Information Criterion (AIC) is a means to penalize models
with too many parameters. When comparing models, one compares their
AIC values

AIC =2d —2log L*

where d is the number of parameters in a model and L* is the maximum
likelihood for that model. The model with the lower AIC is often preferred:
higher d is bad unless log L* can increase enough to compensate.

When Maximum Likelihood Isn’t So Good

While maximum likelihood is often a good approach, in certain cases, it
can lead to a heavily biased estimates for parameters, i.e., in
expectation, the estimates are off. Here is a trivial example.

Suppose our model posits that X ~ U([0, «]) is a random variable
uniformly distributed on [0, o], i.e., the pdf is

(x) = 1/0,0<x <«
piX) = 0, otherwise.

When Maximum Likelihood Isn’t So Good

We are given the set of sample points D = {xq, Xz, ..., Xy }. Given the
data, what estimate do we place on «?

We adopt the indicator function notation. We write 1<, to represent
the value 1 if x; < « and 0 otherwise, etc.

When Maximum Likelihood Isn’t So Good

Assuming iid,

Pr(D|o) = H(ILX,<04
1

= NHX‘] <a,Xo<a,.... XNSa

1

= aN Lmax{xy,... v} <

Since a~N is monotonically decreasing in «, it is maximal when « is as
small as possible. But from the 1 ..(x,,....xy}<a t€rM, a can be no smaller
than max{xi, ..., xy} or else the likelihood is 0 whence the maximum

likelihood oo = max{xy, ..., Xy }.

When Maximum Likelihood Isn’t So Good

Is this estimate any good? Given N iid points X; sampled from U([0, a]),
we can calculate E(Y = max{Xj, ..., Xn}).

The cdf (cumulative distribution function) for Y,

N N 0, ¥y<0
Fiy)=Pr(Y <y)=[]PrXi<y)=]]|{y/a. 0<y<a
= =AU, y>a
yielding a pdf
N N
f(y)=F(y) = WyN "o<y<a-
Integrating, we calculating E(Y) = [¢" yf(y)dy = 5o

So as N increases, the estimate is better and better. But it tends to
underestimate the true value.

Logistic Regression

Logistic regression is a supervised learning algorithm (we know some
ground truths ahead of time and these are used to “train” the algorithm).
In its basic form, it is used to classify a binary output: “cat” vs “not cat”,
“cancerous” vs “benign”, etc.

As as a model, we denote x = (1, Xy, X, ..., Xn) € R™ to be a features
vector (a 1 plus the values of n properties used to make a prediction
plus). The 1 is useful later.

We assume there is a Bernoulli random variable Y < {0, 1} to indicate
a negative/positive result we wish to describe where

Y ~ Bernoulli(p(x; 9)),
i.e., given an x, we can say
Pr(Y=1)=1—-Pr(Y =0) = p(x;0).

The parameters are represented by 6.

Logistic Regression

_rent$ # thefts homicide?
record 1 T 1000 3 1
record 2 1 2300 3 0
record N 1 1600 0 0
X Y

Idea of using data to make predictions on a binary outcome.

Remark: often data are normalized before being placed in a logistic
regression fit. Thus, we may convert all values to their z—scores or divide
all values by the || - ||« value.

Logistic Regression

In logistic regression, we choose

and then let
p(x;0) = o(x0) = o(bp + X101 + ... + Xnbn)
where o is the logistic or sigmoid function

 e(2)
o(z) = Txp(z)'

Logistic Regression

T(Z) I.UE

0.8 |

0.6}

Plot of sigmoid function.

Logistic Regression

Given a data matrix X € RN*("+1) storing N records of features with
corresponding ground truths stored in y € {0, 1}V, we assume each y; is
the realization of a Bernoulli trial with x = X;. the i row of X.

Finding the optimal § € R™ for logistic regression amounts to
maximizing the likelihood:

Logistic Regression

The log likelihood is

N

L= Z Ly—o log(1 — o(Xi.0)) + Ty.—1 log(o(X;.6))
i=1

= > log(1—o(Xi0))+ Y log(o(X:b))

ist y=0 ist y=1

Note: the this value is hurt a lot when the algorithm is really sure that
Yi=1 (o~ 1)buty; =0 (log(1 — o) | —0). The same story applies
when the algorithm believes Y; = 0 but y; is in fact 1.

Logistic Regression

Remarks: Mathematically, o € (0, 1). But through numerical roundoff
errors, this can become 0 or 1. This will screw up computations. So from
a practical perspective, it can be useful to define:

e, |if 1i)$<(pz()z) <e

o(z)=q1—¢ 22>

exp(2) i
Trexp(2)’ otherwise

for some 0 < € < 1. Pick e = 10712, say.

The trick with the indicator function is quite useful: it allows us to write
simpler sums that are not directly using the values of the response
variable y;.

Logistic Regression

Finding the likelihood maximizing # can be done with a method such as
gradient descent upon — log L.

If we wish to find A
6 = argmin, (—log £(0))

we pick an initial guess 6(9). Then denote
G(0) = V(- log L(#)) € R™.
We recursively define
gl = g0) — o G(o)

where 0 < « is a learning rate. Usually o < 1, maybe 0.01 or something.

Logistic Regression

For predictions, one can vary a tolerance threshold 0 < 7 < 1 such that
we predict Y = 0 when p(x;0) < 7 and Y = 1 otherwise. The choice of

7 = 0.5 is intuitive but not always the right choice. Generally as 7 varies,
there is a tradeoff between true positives (model predicts a positive
outcome and observations confirm that) and false positives (observation
results in a negative outcome but the model predicts a positive outcome).

If 7 | 0 then the model always predicts a positive outcome: the true
positive rate is 100% (but so is the false positive rate - not good).

If 1 1 then the model always predicts a negative outcome: the false
positive rate is 0% (but so is the true positive rate - not good).

Logistic Regression
One concern with logistic regressions is if they have predictive power in
an unbalanced dataset: 95% of cases are positive, say. In that case,
always predicting positive, regardless of the inputs would yield an
accuracy of 95%.

To evaluate predictive power (besides validating against more data), we
begin by imagining a perfect logistic regression algorithm.

For a perfect regression, we should be able to sort the N data points into

X1, ..., Xm Where
y1 =0,...,¥m = 0 with
p(xq;0) < ... < p(xm; 6) < 7 and

Xmi1, -, Xy Where
ym+1 — 17__,7yN = 1 Wlth
T < P(Xm1:0) < ... < p(Xn; 0).

Logistic Regression

p=0 truth p=0 trut+h
predict - - predict - -
T — T — :
predict + + predict + +
1 pl

perfect useless

For different 7, perfect (and useless) classifiers will change their predictions.

Perfect classifiers can perfectly separate outcomes based on the p’s and
useless classifiers mix everything up.

Logistic Regression

In general then, as 7 ranges on [0, 1], we should see an ROC (receiver
operator characteristic) curve moving from (1,1) to (0, 1) then to (0, 0) in
the true positive vs false positive space.

A random regression where no insights can be drawn would mix up the
positive and negative cases tracing a curve from (1,1) to (0, 0).

In general, the ROC curve is somewhere between the two for a predictive
model. The AUC (area under the curve) will be bigger than 0.5.

Logistic Regression

True Positive

L T=0 perfect

useless

predictive

T=1

False Positive

ROC curves. The AUC is the area under the curve as 7 varies from 0 to 1.

Mixture of Gaussians

Let’s consider another problem, an unsupervised learning problem
(ground truth is not known). We want to group observation points into
clusters.

As a model, we assume there exist k different groups and each
observation belongs to one of these groups. We never know what group
an observation truly belongs to!

Mixture of Gaussians

We imagine a datum X; being generated as follows:
» Choose
Z; ~ Multinomial(py, ..., pk)
to be a cluster index so Z; € {1,2,..., k} with Pr(Z; = j) = p; for
1 <j < k. We say Z; is a latent variable because we never know it.

» After assigning a cluster, j, say, the observation is given a value in
R" according to a multivariable Gaussian

Xi NN(N/'?E/)

where 1; € R" is the mean for cluster j and =; ¢ R™*" is the
covariance of points within cluster j, i.e.,
= = E((Xj — 1) @ (Xj — 15))-

Mixture of Gaussians

Case of 2 clusters with different means and covariances. Observations do come
from one of the clusters but the real clustering us unknown.

Mixture of Gaussians

Notation: for brevity (context should make it clear), we may write
= to represent all of =4, ..., Zg;
Z to represent all of Zy, ..., Zy,
x to represent all of xq, ..., xn;

etc.

Mixture of Gaussians
There is a lot we don’t know: the u’s, =’s, and p’s! Putting that aside for
now, we can try to come up with a likelihood.

We shall denote
. -\ _ 1 1 =1 .
p(U; piy =) = W eXP(—§<U — iy = (U= pi)))
to be the density of the multivariable Gaussian in cluster i.

For a single observation X; (and playing fast and loose with densities and
probabilities):

]~

Pr(Xi = xjlp, 1, =) = » Pr(Xi = Xi|pe, =) Pr(Z = £)

I\

1

I
M =

Pep(Xi; te, =0)

~
Il

;
Not so bad...

Mixture of Gaussians

Now we consider our entire dataset. We have N realizations of these
random variables x1, ..., xy. The likelihood, assuming each observation is
iid is:

N k
L=1] (Pep(Xi; e, 54)) :
/=1

i=1

And the log likelihood is

N k
£=3 s S pitnone 20
i=1 =1

This is not much of an improvement. Maximizing this is difficult: we can’t
maximize analytically here and gradients are difficult to compute.

Remark: one of the chief difficulties is having a log of a sum. The fact we
don’t know the Z’s is a big challenge!

Mixture of Gaussians
Suppose we knew the Z;’s... Then

PI’()(, = Xi A ZI = Zf|p7 K, E) = Pr()(l = XI'|NZ,'7 EZ,') Pr(zl = Zf)
= pZ,‘p(Xi; ,uZ,'uEZ,')v

not a sum anymore. So if we knew all the Z;’s then the complete
likelihood and complete log likelihoods are given by

N

= 1L par(xi 1z =2)

i=1

N k
= H H (,Dg,O(X/; Kz, EZ@))HZ':Z g

i=1¢=1

= log L* = ZZJIZ, (log p¢ + log p(Xi; e, =¢))
i=1 £=1

Mixture of Gaussians

It can be proven that by maximizing the expected value of the complete
log likelihood with respect to posterior of the latent variables, we also
maximize the true likelihood. We want to maximize

Ezx(L").

Ez x means to compute an expectation conditioned on the observed data
X. In particular:

N K
Ezx(£%) =Y Y Ezx (12— (log pe + log p(Xi; e, Z¢)))
=

Il
R
Il

Ezx(1z—¢) (log pe + log p(Xi; 1o, =¢))

I
M=
™~

Il
R
~
Il

1

Pr(Zi = £|Xi = x;) (log p¢ + log p(X;; f1e, =¢))

I
M~

Il
R
~
Il

1

Mixture of Gaussians

From Bayes, we can write

Pr(Z = 01X = x) = Ki = X2 =) Pr(Z = 1)

Pr(X; = x)
_ Pep(Xii e, Ze)
Sy Pep(Xii ey =)

=ik

This means for fixed parameters, we have

Nk
Ezix(£%) = it (log pr + log p(Xi; e, Zr)) -
i=1 =1

Mixture of Gaussians

If the ~’s were fixed, it wouldn’t be hard to maximize this. Since the log py
and log p(Xj; i1z, =z,) terms are decoupled, we can maximize p separately

from p and =. To maximize over p we wish to:

maximize F(p) = ZZ%UO%PZ

i=1 ¢=1

subject to G(p) = Zpg —1=0, minp>0.
The Lagrange system is

VF =AVG
G(p) =0

Mixture of Gaussians
We can compute
k 5 N
,_- ZZ’W@ 0.j Z’Y/Z
=1 ¢=1 -1 Pi

and

Giventhat SN, %4 — Nforj=1,...,k, we get pj = A~ S, ~;;. And by

P
the G constraint,
=1

k N k
Dop=1=2T"30
j=1

i=1 j=1
giving A = N so that

1 N
N Z’th'
i=1

Mixture of Gaussians

Maximizing over p and = can be done, too, but the work is more
cumbersome...

To maximize Ez x(L£*), we employ the famous EM (Expectation
Maximization) algorithm:

» Guess initial values for the parameters: p(®, (9, =) Thenin
general iterate from tto t + 1 via:

» E-step: calculate v(!*") with fixed p(®, p(0, =0,
> M-step: with (1) fixed, let
(ptH1), p(tHD =(HD) — argmax,, , =Ezx (£*).
> lterative between Expectation and Maximization until convergence.
The appropriate cluster for x; is £ = arg max,v; ,.

Mixture of Gaussians

X |EX|z;i*

In general Ez x(£*) gives a lower bound for L. lteratively, we can maximize L.

Mixture of Gaussians

Remarks: The value k is a hyperparameter (we choose it ahead of
time) although there are means of justifying what k should be.

The EM algorithm is very general and is often used in models where
there are latent variables.

The kmeans algorithm can be thought of as a mixture of Gaussians
where all of the covariance matrices = are equal to o2/ where o2 is a
variance and / is the identity: in other words, all the clusters are
“spherically” symmetric with the same spread.

Mixture of Gaussians

The basic kmeans algorithm clusters N points x; € R”, i =1,..., N, into k
clusters. To implement:
» (1) Begin by randomly assigning each point to a cluster from 1 to k.
» (2) Calculate p1, ..., uk, the centre of mass of each cluster given the
assignments.
» (3) For each point x;, place it in the cluster index £ where
¢ = arg min,dist(x;, 1u).
»> (4) Repeat (2) and (3) until convergence.
Step (3) can be thought of calculating v; , and “rounding” ~; , up to 1
where it is maximal. Step (2) can be thought of as estimating the
parameters p1, ...ux With the ~’s fixed.

Mixture of Gaussians
We can justify maximizing Ez; (£*) to maximize L as follows:

L(p,p, =) = logPr(X|p, 1,Z) =log Y PrH(XA(Z=2)|p,n,5)
ze{1,2,...k}N
Pr(X A (Z =2)|p, 1, =)
¢ D PZ=A0 5
ze{1,2,...kK}N
g Pr(X A (Z = 2)|p, 11, 5)
r =2)|lp, i, =
> =
> Z Pr(Z = z|X) log Pr(Z = 2/X)
ze{1,2,...k}N

— Y (PH(Z=2zIX)logPr(X A (Z = 2)|p, 1. Z)
ze{l1,2,.. kKN

—Pr(Z = z|X) log Pr(Z = z| X))

>0

=Bz (L (1, 2))— Y, Pr(Z=2)logPr(Z =2).
ze{1.2,... k}N

