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Abstract

At the 2014 Fields-MPrime Industrial Problem Solving Workshop, PerkinElmer pre-
sented a design problem for mass spectrometry. Traditionally mass spectrometry is
done via three methods: using magnetic fields to deflect charged particles whereby
different masses bend differently; using a time-of-flight procedure where particles of
different mass arrive at different times at a target; and using an electric quadrupole
that filters out all masses except for one very narrow band. The challenge posed in the
problem was to come up with a new design for mass spectrometry that did not involve
magnetic fields and where mass-fractions could be measured in an entire sample on a
continuous basis. We found that by sending the sample particles down a channel of
line charges that oscillations would be induced with a spatial wave-length being mass-
dependent thereby allowing different masses to be separated spatially and potentially
detected on a continuous basis, without the use of magnetic fields. In this paper, we
present the analysis of our design and illustrate how this principle could be used for
mass spectrometry.
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1 Background

1.1 Mass Spectrometry

Mass spectrometry is a technique used to determine the chemical composition of a certain
substance or substances by separating atomic elements by mass. The most common under-
lying mechanism of most mass spectrometers is by ionizing each particle, giving each particle
the same net positive charge and exploiting their mass-charge ratio. There are three mech-
anisms that are primarily used for industrial mass spectrometers [4]. One technique uses
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magnetic fields to separate masses into rings of distinct radii which can then be detected.
The use of magnetic fields however is quite costly and was not desired by our industrial
partner. The second most common technique is a procedure known as time of flight which
excites the mass sample by giving it kinetic energy and sending the particles through a given
path. Because the particles will have different accelerations, this makes all the particles have
different velocities and hence for a fixed detector position, they will have different travel
times. It was indicated to us by the industrial partner however that this method is also
not desirable because the kinetic excitation comes in pulses of energy which means that any
transient changes in chemical composition will not be detected. With these considerations in
mind, it was desired by the industrial sponsor to design a mass spectrometer that only uses
electric fields and that doesn’t lose any sample resolution. It was also noted that devices
that “trap” particles, confining them to localized spatial regions for later detection, are less
desirable as this again does not allow for continuous measurement of composition.

Another device that is used is known as a Quadrupole Mass Spectrometer (cf. [4], [2], [5])
which works as a bandpass filter separating masses. The design has 4 conductors which have
a base DC voltage plus an AC voltage such that diametrically opposite electrodes have the
same potential and adjacent electrodes have opposite voltages. The AC voltage is such that
heavy masses do not react to the changing polarity fast enough, effectively only feeling the
base DC and hence slowly drifting to the conductor that was originally negatively charged
and eventually annihilating. This is the low pass component of the filter. Conversely, the
lighter positive charges feel the effect of the modulating AC and doesn’t notice the DC. Very
light charged particles are impacted by the AC very quickly, being excited due to resonance
effects [5] and thereby collide with the electrodes near entry. This is the high pass filter
component of the device. With these effects combined, parameters can be chosen to isolate
a band of a single mass to pass through the detector. In order to detect several masses,
industrialists need to inject repeated copies of the sample and adjust parameters to change
the isolated mass. While the industrial partner was generally happy with this device, they
were concerned about the time taken to process individual masses as well as the potentially
limited amount of initial sample available. In this paper, we explore the task of finding a
device that could detect multiple masses at once keeping these stipulations in mind.

1.2 Electric Ion Dispersion

Our idea presented in this paper is based on harmonic oscillation. If two fixed positive
point charges were separated and a positive charge were introduced at a point away from
the equilibrium of the charges, oscillations about the equilibrium would occur in a one-
dimensional system. The period of these oscillations will be mass dependent. Likewise, if
the charged particles were deflected from the edges of a long device and all maintained a
roughly constant axial velocity, the temporal periods will translate into spatial wavelengths
whereby different masses have different wavelengths. Such a property could be exploited to
induce a mass dispersion. See Figure 1. Note that we consider a series of isolated point-
charges instead of a line of charge. In the limit, as we show, this point-charge model reduces
to a line-charge model. It is potentially more practical from an engineering perspective to
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have isolated charges insulated from each other than line charges. By analyzing the model
with these isolated charges, we in effect analyze the line charge model as well. Observe that
this device operates in a plane. While it may seem natural to extend this to a solenoidal
geometry, as we observe in our modelling work, a solenoid approximates a cylinder with
constant boundary potential too well and thus the desired effect is not achieved as the net
electric field inside is approximately zero.

Figure 1: A sketch of the line charge device: within the plane, particles enter from the bottom
and are excited into oscillations in x with approximately constant y-velocity. The circles
indicate positive charges of charge +Ze with a vertical spacing of 2H. In the implementation,
likely H would be very small so that particles cannot exit through the sides of the device,
or if practical the isolated charges could be replaced by a line of charges with uniform linear
charge density.

2 Designs

We consider two designs here. The first design illustrates a proof-of-principle for our ion
dispersion technique and is two-dimensional, with the sides of consisting of isolated charges
along a line. This model will be amendable to mathematical analysis. The second design is
less straightforward to analyze and we rely upon numerical methods. It consists of a helical
wire carrying a uniform linear charge density. It is unfortunately not useful in producing
the desired mass dispersion effects. All of our analysis is based on simple principles of
non-relativistic electrostatics, for which [3] is an excellent reference.
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2.1 Line Charges Design

Charges with net charge Ze are placed along the line x = 0 at positions y = 0, 2H, 4H, 6H, ...
and at positions x = H, 3H, 5H, 7H, ... The staggering adds an extra level of protection that
the moving particles don’t escape through the sides of the device. Any charges that are
placed in the dispersion device will experience forces from the fixed point charges along the
device via Coulomb’s Law:

V =
Ze

4πε0

N∑
j=1

(
1√

x2 + (y − 2jH)2
+

1√
(x− 1)2 + (y − (2j − 1)H)2

),

mẍ = −e∇V

where we neglect particle-particle interactions at this point. Here, e is the fundamental
electric charge, Z is the charge number for the fixed point charges on the device, N is the
half the number of device charges on each side of the device, H is the half the vertical spacing
between adjacent charges (due to the non-symmetric staggered charge distribution across the
two sides of the device), and ε0 is the permeativity of free space, and m is the mass of the
entering test charge. We make the following non-dimensionalizations:

x = Wx̄, y = Wȳ, t =
W

U0

t̄

where W is the width of the device and U0 is the magnitude of a typical incoming particle
velocity, i.e.

U0 =
√
U2
0x + U2

0y.

If we define the following quantities

h =
H

W
,

βm =
Ze2mp/m

4πε0mpWU2
0

,

r̄j =
√
x̄2 + (ȳ − 2jh)2,

ρ̄j =
√

(x̄− 1)2 + (ȳ − (2j − 1)h)2

then we can write our non-dimensional system as (dropping the overbars for convenience):

ẍ = βm

N∑
j=1

(
x

r3j
+
x− 1

ρ3j

)
, (1a)

ÿ = βm

N∑
j=1

(
y − 2jh

r3j
+
y − (2j − 1)h

ρ3j

)
. (1b)

All parameter values are listed in Table 1.
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Parameter Description Value

W Width of Device 0.1m
H Half Charge Spacing on Device 1× 10−4m

U0 Incoming Particle Velocity
√

2× 104ms−1

e Elementary Charge Constant 1.6× 10−19C
Z Charge Number of Device Charges 15
N Quantity of Device Charges on Each Side of Device 20000
ε0 Permeativity of Free Space 8.85× 10−12CV−1m−1

mp Mass of a Proton 1.6726× 10−27kg

Table 1: Parameters used in non-dimensional model of ion dispersion.

2.2 Solenoidal Design

We consider a solenoidal geometry with a wire of uniform charge density parameterized as
a helical segment. Our wire takes the form

〈x(θ), y(θ), z(θ)〉 = 〈R0 cos(θ), R0 sin(θ), αR0θ〉

with 0 ≤ θ ≤ 2NH
R0α

, carrying a uniform charge density

λ =
Ze

2πR0

√
1 + α2

.

By setting R0 = W/2, this solenoid has the same width as the separated charges and with

α =
H

2πR0

,

the spacing between charges in the separated charge design corresponds to the z−distance
between consecutive helical rings. Also, for every change of θ by 2π, the wire length is
2πR0

√
1 + α2 giving a total charge of Ze. With this, the potential energy of a particle of

charge e is

V =
R0λ
√

1 + α2e

4πε0

∫ 2NH
R0α

0

dθ√
(x−R0 cos θ)2 + (y −R0 sin θ)2 + (z −R0αθ)2

.

This integral is obtained by integrating the potential energy contribution of each differential
arc length element of the helix over the length of the helix.

We then make the nondimensionalizations:

〈x, y, z〉 = R0〈x̄, ȳ, z̄〉, t =
R0

U0

t̄

and define

γm =
Ze2m/mp

8π2ε0mpR0U2
0

√
1 + H2

4π2R2
0

.
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In dimenionless form the equations of motion m d2

dt2
〈x, y, z〉 = −∇V , again dropping the

overbars can be expressed by:

〈ẍ, ÿ, z̈〉 = γm

∫ 2NH
R0α

0

〈cos θ − x, sin θ − y, αθ − z〉
((x− cos θ)2 + (y − sin θ)2 + (z − αθ)2)3/2

dθ (2)

2.3 Initializations

2.3.1 Design Initial Conditions

Given x = y = 0 is the bottom-left corner of the line charge device then in order to have
incoming particles enter from outside the device we require

y(0) = y0 < 0.

It was previously mentioned that the premise of the device is oscillation around the equilib-
rium of point charges. This equilibrium lies directly at the center of the device and therefore,
in order to have periodic motion we take,

x(0) = x0, 0 < x0 <
1

2
.

Without loss of generality, we can set

ẋ(0) = 0

because by placing the particle away from equilibrium with respect to the device charges, we
will induce horizontal motion for t > 0. Imposing the initial vertical velocity is slightly less
straight-forward. If the velocity is too high then the particles will enter and exit the device
before any effective horizontal motion can begin. Conversely, if the charge is too small then
the incoming particle will be repelled by the charges in front of it and will not have enough
energy to enter the device. We therefore need the velocity to be sufficient to overcome the
initial potential barrier but to not be too large. To approximate the potential barrier, we
consider a “centre of charge” argument where all of the wall charges are concentrated as a
single charge in the centre of the device. If this were the case, we want to give the particle
enough kinetic energy to overcome the potential difference of its relative starting position to
this group charge and the distance between the particle and the group charge at the entry
of the device. With this in mind we get the following inequality for the vertical velocity,

ẏ(0) >

√√√√ ZβmN((
x0 − 1

2

)2
+ (Nh)2

)1/2 − ZβmN((
x0 − 1

2

)2
+ (y0 −Nh)2

)1/2 .
Using the values x0 = 1/4 and y0 = −1 along with the parameters in Table 1, we get that

ẏ(0) & 0.1,

i.e. the initial velocity has to be at least 10% of the dimensional U0 velocity. According to
our industrial partner, this velocity is easy to achieve for any initial concentration.

Our argument for the initialization of the solenoidal design is identical: the particles are
fired into the device away from the central axis.
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3 Numerical Results

We implemented numerical and analytical techniques to analyze the designs.

3.1 Line Charge Design

We implemented the model using ode45 in Matlab choosing parameters from Table 1 and
taking x(0) = 1/4, y(0) = −1, ẋ(0) = 0, and ẏ(0) = 0.2. Figure 2 shows the x−y trajectories
for a series of masses (0.5mp, mp, and 2mp) with the blue curve being the trajectory for
mass 0.5m, the black curve for mass m and the red curve for mass 2m. The spacing between
charges is non-dimensionally h and so the length of the device is 2Nh.

Figure 2: The red lines along the side represent the small spaced point charges while the
curves inside are the trajectories of different masses. The blue curve is the trajectory for the
mass 0.5m, the black curve is the trajectory for mass m, and the red curve is the trajectory
for mass 2m.

Very quickly, we see that the mass dispersion relation has separated the three particles.
Figure 3 shows the y−velocity for the mass m.
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Figure 3: Plot of y−velocity over time. The “sharp” transition regions are where the particles
enter and exit the device respectively separating two regions of essentially constant velocity.
The transition regions themselves experience a very small acceleration.

While there is a vertical acceleration through the device, it is quite small. This effect is
seen in any mass that enters the device with smaller masses having the larger accelerations.
Therefore, the device appears to have the original intention of maintaining y−velocity and
reducing the problem to that of a single oscillator between two charges. In the sections that
follow, comparisons with numerics refer to plots generated using this ode45 implementation.

3.2 A Posteriori Justification of Negligible Interaction Forces

Although we neglected the interaction between individual charged particles in the numerical
results, focusing solely upon the forces induced by the charged cavity on the particles, we
justify the negligible forces by considering how big the force between two particles would be
if they traveled along their natural trajectories (x1(t), y1(t)) and (x2(t), y2(t)) by considering
only the forces induced by the charged walls. We consider two particles of dimensionless
mass 1mp and 2mp, originating at (1/4,−1) with zero initial x-velocity and a y−velocity of
0.2 and plot the force

f(t) =
β̃mm/mp

(x1(t)− x2(t))2 + (y1(t)− y2(t))2

versus time, both in dimensionless units, when both particles have entered the device. Note
that β̃m = βm/15 because the charge of the individual particles are Z = e and not Z = 15e.
We also can compute the dimensionless force of the device acting on the particles over that
same range of time via

fj(t) = aj(t)/βm
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where aj(t) is the magnitude of the dimensionless acceleration of particle j.
As we observe in figures 4 and 5, the dimensionless force exerted on the particles by the

device greatly exceeds the force exerted between the two particles on each other by several
orders of magnitude. The smallest force exerted on the particles by the device is still roughly
60 and generally much larger, whereas the typical scale of the force between the two particles
is 1 × 10−4 The plots of the forces are for two particles, but even for hundreds, the forces
between particles would be negligible. Particle collisions are another possibility, but these
tend to be very infrequent and the main effect would be to reduce the particle velocities as
noted in [1].

Figure 4: The dimensionless force between the two particles of mass mp and 2mp as they
move along their trajectories.

9



Figure 5: The dimensionless force exerted by the device on the particles of mass mp and 2mp

denoted by f1 and f2 respectively.

3.3 Solenoidal Design

We include a plot of a trajectory found in the solenoidal model in figure 6. With the solenoid,
there is minimal bending and, although not evident from the plot, there is a nearly constant
drift of the ionized particles within the device instead of a helix as desired. We attribute this
to the fact that when the helix is tightly coiled (as is necessary to reduce the risk of particles
leaving the device through its sides) then a uniform voltage on the helical walls very closely
approximates a constant potential on the walls of a cylinder whereby the inner electric field
is zero and thus particles drift but are not accelerated.
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Figure 6: This plot shows the trajectory of the charged particles (red) entering through the
device (blue) at z = 0. Note there is a slight deflection but ultimately there is only a drift.

4 Analytic Results

Since N , the number of charges on each side of the device, is so large in the staggered charge
model, we expect that the summation in equation (1) can be replaced by an integral. Indeed
this is how a line charge model can be derived by taking a limit of point-charges. The device
sides in Figure 2 are discrete charges but appear as a single line charge when the spacing is
very small. Performing a Riemann summation, we can approximate the following sums as
integrals:

β
N∑
j=1

x

r3j
≈ − β

2h

∫ y−2Nh

y

x

(x2 + s2)3/2
ds

β

N∑
j=1

y − 2jh

r3j
≈ − β

2h

∫ y−2Nh

y

t

(x2 + q2)3/2
dq.

Similar integration transformations follow for the ρj summations. Using these integrals as
replacements in (1) and performing the integration we get a new line-charge continuum
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model:

ẍ = − β

2hx

(
y − 2Nh

ρx,y−2Nh

− y

ρx,y

)
− β

2h(x− 1)

(
y − 2Nh

ρx−1,y−2Nh

− y

ρx−1,y

)
(3a)

ÿ = − β

2h

(
1

ρx,y
− 1

ρx,y−2Nh

+
1

ρx−1,y

− 1

ρx−1,y−2Nh

)
(3b)

where
ρa,b =

√
(x− a)2 + (y − b)2.

Solving (3) numerically using ode45 and comparing it to the numeric computations of (1)
for a single mass m is displayed in Figure 7 which shows relatively strong agreement.

In the design of interest, the length L = 2Nh � 1 and we can exploit this to obtain
a leading-order asymptotic estimate for the accelerations given in equations (3a) and (3b)
when 0 < x < 1 and y = L/2 + u with |u| � L i.e. when the particles are well into the
device with respect to either end. In essence we are performing an asymptotic expansion in
the acceleration equations starting at some time when y ≈ Nh. We write

ẍ = − β

2hx

(
u− L/2√

x2 + (u− L/2)2
− L/2 + u√

x2 + (u+ L/2)2

)

− β

2h(x− 1)

(
u− L/2√

(x− 1)2 + (u− L/2)2
− y√

(x− 1)2 + (u+ L/2)2

)

= − β

2hx

(
−L/2 + o(L)√
L2/4 +O(L)

− L/2 + o(L)√
L2/4 +O(L)

)
− β

2h(x− 1)

(
−L/2 + o(L)√
L2/4 +O(L)

− L/2 + o(L)√
L2/4 +O(L)

)
∼ −β

hx
+

β

h(x− 1)
+ o(1) and

ÿ = − β

2h

(
1√

x2 + (L/2 + u)2
− 1√

x2 + (u− L/2)2
+

1√
(x− 1)2 + (L/2 + u)2

− 1√
(x− 1)2 + (u− L/2)2

)
= − β

2h
(

2

L
− 2

L
+

2

L
− 2

L
) + o(1/L)

= o(1/L)

From this asymptotic work taking terms of size O(1), we consider far simpler acceleration
equations for our analytic work, namely

ẍ =
β

h

(
1

x
+

1

x− 1

)
(5)

and

ÿ = 0. (6)
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This nearly constant y−velocity as mentioned in the numerical results is expressed by the
zero y−acceleration.

Figure 7: The trajectories of a single mass m with the blue solid curve representing the
trajectory for the full summation model (1) and the red dashed curve representing the
trajectory for the model (3) with the summations replaced by integrals.

If we consider (5) a final simplification of our whole model then we can actually use it to
approximate the period of oscillation. Firstly, we can multiply (5) by ẋ and integrate to get

ẋ = ±
√

2β

h
log

(
x(x− 1)

x0(1− x0)

)
where the change in sign comes from the transition through turning points in the oscillation.
Note that this model is only valid near the middle of the device and this x0 value is the initial
position away from equilibrium for the trajectory in this asymptotic regime where x0 < 1/2
and ẋ = 0 when x = x0; it isn’t necessarily the same as the x0 value in the initializations
for the numerics. If we integrate this expression once more from the initial time t = 0 where
x = x0 to the turning time t = T1/2 where x = 1− x0 then we recover the half-period,

T1/2 =

√
2h

β
I(x0)
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where

I(x0) =

∫ 1−x0

1/2

dx√
log(x(1− x))− log(x0(1− x0))

.

Here we integrate only from the equilibrium position by exploiting an even symmetry in the
integral. Given a fixed initial position, I(x0) can be computed numerically. The integral is
singular but integrable. If all parameters are fixed aside from mass then since β depends
inversely on mass we have a dispersion relation,

T1/2 ∝
√
m. (7)

We plot the full period (T = 2T1/2) dispersion relation in Figure 8 with the parameters taken
from Table 1 and the simulations in section 3.
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T
 (

s)

Figure 8: Dispersion relation of the period T versus the mass m. This figure is in dimensional
units with m in atomic mass units and T in seconds.

Finally, in Figure 9, we plot the x(t) solution (in blue solid) from the full numeric simulation
of (1) along with the solution x(t) (in red dashed) from (5). The approximation of the
integral model ignores the portion of the time spent outside the device and this has the
effect of inducing a phase difference between the predicted and numerical solutions.
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Figure 9: The full numerical solution to (1) plotted in a blue solid curve along with the
full numerical solution to (5) plotted in a red dashed curve. This figure demonstrates the
synchronous period between the two models.

The period approximation (7) is the exact period for the red dashed solution and an ap-
proximation to the full period. Indeed, the figure shows the agreement between the periods
of the two models. The phase difference results from model equation (5) approximating the
system with the mass already inside a one-dimensional oscillator while the full model has a
lag as the mass enters the device.

5 Conclusions and Future Work

We have designed a device that separates components of a chemical substance by mass
and detects them simultaneously, thus addressing the problem that was proposed by the
industrial partner. Our device solely uses an electric field and does not trap the ions as they
travel thus being considerate of both the financial and physical constraints stipulated by the
sponsoring company. While the full model is relatively intractable to analytic analysis, we
have demonstrated that with some very insightful simplifications, we can recover a mass-
dispersion relation for any sample. While actual device imperfections make this curve a
theoretical one, it could still serve as a benchmark for calibrating any machine made using
this technology.

Possibly by combining a solenoidal design with more complicated engineering practices,
such as a length-dependent potential or variable coil radius, the desired effects could be
produced.

We decided to not focus on the feasibility of particle detection when considering our
model as this is an entirely different engineering problem. Here we propose two methods
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that could be useful in detecting different types of particles. Firstly, we consider that an
areal detector could be placed along the device. Since the particles travel along different
trajectories, they would cross an areal detector at different positions in the plane of the
detector. Using data fitting to the curve generated in Figure 8, one could calibrate the
device based on certain control masses. A second detection mechanism could involve the
ability to measure the oscillating signal of the masses. Through Fourier techniques, the
oscillations could be decomposed and the mass constituents identified.
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