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Fusion energy context

General Fusion (2002-): attempting to produce clean,
sustainable fusion energy on earth.
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Fusion

Fusing atomic nuclei yield new nuclei plus energy
Lawson criterion for energy yield:
density× temperature× time ≥ 4× 1015 cm−3 KeV s
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General Fusion design

Magnetized target fusion: magnetically confine plasma
with magnetic field, implode in metal cavity

Michael Lindstrom

Magnetized Target Fusion and Field Perturbations



Fusion: Intro Fusion: Numerics and Asymptotics Fusion: Summary Superconductor: Problem Superconductor: Results

Lead-Lithium

With density ρ, velocity v , and pressure P:

ρt +∇ · (ρv) = 0 (mass conservation)
(ρv)t +∇ · (ρv ⊗ v) +∇P = 0 (momentum conservation)

Empirical fit to lead experiments P = P(ρ)
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Pistons, plasma, and general simplifications

Spherical symmetry
Pressure: Piston (Gaussian), plasma (gas and magnetic)
Reversible conditions; equilibrium initialization
No mixing of plasma and lead-lithium:

d
dt

rboundary(t) = v(rboundary(t), t)
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Overall model

In rL(t) < r < rR(t), t > 0, dimensionless system has form:

ρt +
1
r2 (r2ρv)r = 0, (ρv)t + pr +

1
r2 (r2ρv2)r = 0 (1)

p = p(ρ),
drL,R

dt
= v(rL,R(t), t) (2)

p(rL(t), t) = pL(rL(t)), p(rR(t), t) = f (t) (3)
v(r ,0) = 0, p(r ,0) constant (4)
rL(0) given, rR(0) = 1 (5)
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Finite volume methodology

Conservation ut + (f (u))x = 0:

ūj+1
i = ūj

i − k
F j

i+1/2−F
j
i−1/2

h
F combination of low/high resolution via limiters
L1 convergence:

∫
|unum(x , t)− uex(x , t)|dx = O(hp)

Fixed space domain via coordinate change
Local linearized systems, approximate Riemann solvers
Split stepping for geometric sources
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Pulse profiles
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Abridged sensitivity analysis

Table: Min radius Rmin, Lawson triple product ΠL, impact pressure
Pimpact, initial plasma radius Rplasma,0, initial sphere radius Rlead,0.

System Rmin (cm) ΠL (1015 keV s cm−3)
Baseline 3.6 0.52

Rplasma,0 × 1.1 5.5 0.25
Pimpact × 1.1 3.0 0.64
Rlead,0 × 1.1 3.0 0.92
Pimpact × 2 1.2 16
Rlead,0 × 2 0.84 2.5
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Qualitative story and techniques

Matched asymptotics rmin ∼ b4χ3µ
π

ε: reduced pulse time
ε = 0.0126� 1, sound speed b, radius χ, pressure µ

- I formation: Riemann invariants
- II focusing: velocity potential
- III reflection: boundary conditions imply long-term velocity
- IV/V compression: velocity radially dependent
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Minimum radius

Dimensional minimum radius

Rmin ≈
C4

s Pplasma,0R7
plasma,0%

3
0

πP4
impactR

4
lead,0t2

0
= 1.6 cm

Symbol Meaning Symbol Meaning
Cs lead sound speed Pplasma,0 initial pressure

Rplasma,0 initial plasma radius %0 lead density
Pimpact piston pressure Rlead,0 initial lead radius

t0 impulse time scale
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Key insights

Almost all input energy reflected:

Einput ∼
√

8π3

b
ε3/2, Ecompression ∼

4π2

b4χ3 ε
5/2
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Results and future work

Results:
- energy yield may be within reach
- larger outer sphere radius and impact pressure noteworthy

Future directions:
- more physics
- effects of imperfect spherical symmetry
- more precise assessment of design
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Superconductor roughness context

Superconductors expel magnetic fields, some unresolved
questions that arise in comparing theory to experiment.
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Overview

Superconductors:
- cold enough - no resistance, expel magnetic fields
- YBCO studied experimentally, unexpected field profiles

London Model:
- field decays from applied value exponentially with length

scale λ with flat surface
- experiments find dead layer: could roughness cause this?
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Methodology

Use real AFM surface data to study how fitting parameters
affected
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Results

λ may be underestimated, almost no dead layer: best
fitting (λ, δ) are (0.956λtrue,0.016λtrue)

Minute change in field orientation
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Future work

Extend simulations to spatially varying order-parameters
Consider anisotropic superconductors
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